LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

I M.Sc. DEGREE EXAMINATION STATISTICS

SECOND SEMESTER – APRIL 2015

ST 2814 - ESTIMATION THEORY

Time: 3 hours Max : 100 marks

PART – A

(10X2=20 marks)

- 1. Give an example to prove that an unbiased estimator need not be unique.
- 2. Define UMVUE for estimating a parameter θ .
- 3. Define Sufficient Statistic and provide an example.
- 4. Find which one of the following is ancillary when a random sample X₁, X₂ is drawn from $N(\mu, 1)$.

- 5. Give an example of a family of distributions which is not complete.
- 6. Explain exponential class of family.

Answer ALL the questions

- 7. Suggest an MLE for P[X=0] in the case of Poisson (θ).
- 8. Let X~ B(1, θ), θ = 0.1,0.2,0.3. Find MLE of θ .
- 9. Define CAN estimator.
- 10. Explain Jackknife method.

PART – B

Answer any FIVE questions

(5X8=40 marks)

11. Let X be a discrete r.v. with $P(x;\theta) = \begin{cases} \theta , x = -1 \\ (1-\theta)^2 \theta^x , x = 0,1,2,... \end{cases}$

Find all the unbiased estimators of 0.

- 12. Obtain UMVUE of $\theta(1-\theta)$ using a random sample of size n drawn from a Bernoullie population with parameter θ .
- 13. Let X~ N (θ ,1). Obtain the Cramer- Rao lower bound for estimating θ^2 . Compare the variance of the UMVUE with CRLB.
- 14. i) State and Establish Basu's theorem
 - ii) Define UMRUE
- 15. If T is sufficient is for \mathbf{P} or θ , then show that one-one function of T is also sufficient for \mathbf{P} or θ . Illustrate with an example.
- 16. State and establish Lehmann-Scheffe theorem.
- 17. i. State Cramer-Rao regularity conditions
 - ii. State and prove CR inequality.
- 18. Explain Bootstrap method with example.

Answer any TWO questions

- 19.(a) Let δ_0 be a fixed member of U_g . Prove that $U_g = \{\delta_0 + u | u \in U_0\}$.
 - (b) Let X_1, X_2 be a random sample with $E(0,\sigma)$. Show that (X_1+X_2) and $X_1|(X_1+X_2)$ are independent using Basu's theorem. (10+10)
- 20. (a) If $\{\delta_n\}$ is a sequence of UMVUE's and $\delta_n \rightarrow \delta$ a.s as $n \rightarrow \infty$, then show that δ is UMVUE.
 - (b) State and establish Uncorrelatedness approach of UMVUE. (10+10)
- 21. (a) Let (X_i, Y_i) , i=1,2,...,n be a random sample from ACBVE distribution with pdf $f(x, y) = \{(2\alpha + \beta)(\alpha + \beta)/2\} \exp\{-\alpha(x + y) - \beta \max(x, y)\}, \quad x, y > 0.$ Find MLE of α and β .
 - (b) MLE is not consistent Support the statement with an example. (10+10)
- 22. (a) "Blind use of Jackknifed method" Illustrate with an example.
 - (b) Explain Baye's estimation with an example. (10+10)
